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Abstract: In this research, we propose an innovative thermoelasticity theory that extends the work 

of Tzou [15] on parabolic-type dual-phase lag thermoelastic models. Our approach begins with the 

development of essential governing equations applicable to homogeneous and isotropic materials. 

These foundational equations serve as a springboard for the derivation of several significant 

theorems. The cornerstone of our study is a newly established reciprocity theorem, which we 

formulate using advanced Laplace transform methodology. This pivotal theorem offers profound 

insights into the complex interactions among diverse system components, thereby enhancing our 

understanding of thermoelastic phenomena. 
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1. Introduction 

 

In classical uncoupled thermoelasticity, mechanical and thermal fields do not interact, meaning that changes 

in elasticity do not influence temperature, and vice versa. This creates a scenario where Fourier's law leads 

to a parabolic heat equation, suggesting an infinite speed of thermal signal propagation, which presents an 

ill-posed problem in practical applications. This paradox has garnered significant interest among researchers 

in recent decades. To address these shortcomings, several scholars have advanced the theory of generalized 

thermoelasticity by modifying Fourier's law. The inception of classical coupled thermoelasticity theory was 

attributed to Biot [1], who introduced the exchange of mechanical and thermal energy, culminating in 

fundamentally parabolic-hyperbolic equations that also implied infinite thermal wave propagation speeds. 

A systematic approach to resolving the paradox in Biot's theory has been proposed by a number of notable 

authors [2-8], recognizing the necessity for finite thermal wave speed, often referred to as the second sound 

theory. The earliest work in this vein was conducted by Fox [9], who established a second sound theory 

based on continuum thermodynamics principles. Subsequently, Lord and Shulman [10] expanded upon this 

by introducing a model with a single thermal relaxation time parameter, while Green and Lindsay [11] 

further developed the theory by incorporating two thermal relaxation times, rooted in temperature-rate-
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dependent thermoelastic principles. Later, Green and Naghdi [12-14] proposed a more cohesive framework 

for heat propagation that included thermal pulse transmission. This evolution of thermoelasticity theory is 

categorized into three types: Type-I, Type-II, and Type-III. In this context, thermal displacement gradients 

and temperature gradients serve as constitutive variables. The Type-III model further generalizes the 

previous types by integrating a modified Fourier law of heat conduction, introducing a new constitutive 

variable known as thermal displacement. The study of short pulse waves and ultrafast heat transfer gained 

momentum in the twentieth century. To investigate microstructural heat transfer mechanisms at low 

temperatures, Tzou [15] proposed a dual-phase lag model of heat conduction, necessitating the introduction 

of two distinct phase lags with temperature gradients and heat flux vectors incorporated into Fourier's law. 

Subsequently, Quintanilla and Racke  [16] explored the continuity and boundedness of solutions to the dual-

phase lag heat conduction equation, while Horgan and Quintanilla [17] examined the spatial behavior of 

these solutions. Chandrasekharaiah [18] contributed to this discourse by analyzing a parabolic and 

hyperbolic model in relation to Tzou’s dual-phase lag theory. Additionally, Roychoudhuri [19] studied an 

elastic half-space disturbance problem using a dual-phase thermoelastic model, thereby broadening the 

understanding of these complex interactions. 

 

In the realm of linear isothermal elasticity, Betti’s reciprocity theorem serves as a crucial framework for 

analyzing a body's deformation in response to specific surface tractions and body forces. Particularly, it 

allows for the assessment of deformation resulting from one set of forces when another set of forces is 

prescribed. This theorem becomes an invaluable asset in integrating the equations of elasticity through the 

employment of Green’s function. Noteworthy contributions to the application of the reciprocity theorem in 

engineering problems have been made by Nowacki [20], who outlined various innovative uses, building 

upon the foundational works of Somigliana and Green. Furthermore, Khomyakevich and Rudenko [21] 

introduced an alternative method related to the theorem, expanding its applicability. Numerous researchers, 

including Predeleanu [22], Ionescu-Cazimir [23], Nowacki [20], Shivay, and Mukhopadhyay [24], Jangid, 

and Mukhopadhyay [25], have rigorously validated the reciprocity theorem within both anisotropic and 

isotropic homogeneous elastic media. Their findings underscore the theorem's versatility and significance 

in the field of elasticity theory. 

 

 

This study establishes a reciprocal principle analogous to Betti's theorem. Our analysis focuses on 

fundamental equations subject to mixed boundary-initial value problems. Notably, we consider non-

homogeneous initial conditions in our formulation. This theorem extends the scope and versatility of 

classical thermoelastic theorems, offering enhanced insights into thermal and mechanical field interactions. 
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This principle has potential applications in various fields of engineering and physics, particularly in areas 

such as structural mechanics, heat transfer, and wave propagation. 

 

2.  Basic governing equations 

                                                                                                                                                                                                       

Equation of motion: 

𝜎𝑖𝑗,𝑗 + 𝐹𝑖 = 𝜌𝑢̈𝑖                                                                                                     (1) 

Symmetry relation of stress tensor: 

𝜎𝑖𝑗 = 𝜎𝑗𝑖                                                                                                             (2) 

Entropy equation: 

𝑄 − 𝜌𝜃0𝑆̇ = 𝑞𝑖,𝑖                                                                                               (3) 

Constitutive relation: 

𝜎𝑖𝑗 = 𝜆𝑒𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝑒𝑖𝑗 − 𝛾𝜃𝛿𝑖𝑗                                                                    (4) 

𝑞𝑖 = −K𝜃,𝑖                                                                                                       (5) 

𝜌𝜃0𝑆 = 𝜌𝑐𝐸𝜃 + 𝜃0𝛾𝑒𝑘𝑘                                                                                (6) 

Geometrical equations: 

𝑒𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)                                                                                       (7) 

In the above equations, 𝑒𝑖𝑗 is the strain tensor, 𝜎𝑖𝑗 is the stress tensor, 𝑢𝑖 is the component of displacements, 

𝐹𝑖 is the component of the body force vector, 𝜃 is the absolute temperature referred from temperature 𝜃0, 𝑄 

is the heat source per unit volume, 𝑞𝑖 is the component of the heat flux vector, 𝜆  and 𝜇 are the Lame’s 

elastic constants, 𝜌 is the mass density, 𝑆 is the entropy per unit mass,  K is the thermal conductivity of the 

material, K∗ the rate of thermal conductivity, 𝑐𝐸 is the specific heat at constant strain, 𝛾 = (3𝜆 + 2𝜇)𝛼𝑡, 𝛼𝑡 

is the linear thermal expansion coefficient, 𝑒 is the dilatation and ∇2 is the Laplacian operator. Suppose that 

the stresses and strains are functions of class 𝐶1 whereas the displacements and temperatures are functions 

of class 𝐶2 for all 𝑥 ∈ 𝑉 + 𝜕𝑉. 

The heat conduction equation under thermoelasticity with dual-phase-lags of parabolic type [15]; 

        [K∗ + K (1 + 𝜁𝑇
𝜕

𝜕𝑡
)] ∇2𝜃 = (1 + 𝜁𝑞

𝜕

𝜕𝑡
) (𝜌𝑐𝑣𝜃̇ + 𝛾𝜃0𝑢̇𝑖,𝑖 − 𝑄)    (8) 

Here 𝜁𝑇 the temperature gradient and  𝜁𝑞 the heat flux are the phase lags such that  𝜁𝑇 < 𝜁𝑞. 

 

From equations. (1), (4), and (7), we have 
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                                    𝜆𝑢𝑗,𝑗𝑖 + 𝜇(𝑢𝑖,𝑗𝑖 + 𝑢𝑗,𝑗𝑖) − 𝛾𝜃,𝑖 + 𝐹𝑖 = 𝜌𝑢̈𝑖                                          (9) 

For the system of field equations described above, consider homogeneous initial conditions as 

𝑢𝑖(𝑥, 0) = 0, 𝑢̇𝑖(𝑥, 0) = 0;  𝑥 ∈ 𝑉   and   𝜃(𝑥, 𝑡) = 0,       𝜃̇(𝑥, 𝑡) = 0;        𝑥 ∈ 𝜕𝑉       (10) 

and the prescribed boundary conditions as 

𝜎𝑖(𝑥, 𝑡) = 𝜎𝑗𝑖𝑛𝑗 = 𝑝𝑖(𝑥, 𝑡);    𝜃(𝑥, 𝑡) = 𝜃0(𝑥, 𝑡);    𝑥 ∈ 𝜕𝑉,   𝑡 > 0                                     (11) 

where 𝑝𝑖 are surface traction components and temperature 𝜃0(𝑥, 𝑡) is prescribed on the boundary surface 

𝜕𝑉 of the solid. 

 

3. Reciprocity theorem for DPL Parabolic 

In initial-boundary value problems presented in equations (1)-(11), two distinct thermoelatstic loadings 

systems are applied to a homogeneous, isotropic bounded thermoelastic body given as 

Ω𝛼 = (𝐹𝑖
𝛼, 𝑝𝑖

𝛼 ∶ 𝑄𝛼, 𝜃0
𝛼) , 𝛼 = 1, 2                                 (12) 

where, 𝐹𝑖 , 𝑝𝑖, 𝑄, and 𝜃0  are the body forces, surface traction, heat source, and surface heating respectively. 

Also, the two corresponding thermoelastic configurations are given below. 

𝐼𝛼 = (𝑢𝛼, 𝜃𝛼),   𝛼 = 1, 2                                                                 (13) 

Now for 𝛼, 𝛽 = 1, 2. Suppose 

Ω𝛼𝛽 = K∗ ∫ 𝑑𝐴(𝑥)
𝜕𝑉

∫ [𝜃0
(𝛽)

(𝑥, 𝜏)𝜃,𝑛
(𝛼)(𝑥, 𝑡 − 𝜏)] 𝑑𝜏

𝑡

0

+ Ҝ ∫ 𝑑𝐴(𝑥)
𝜕𝑉

∫ [𝜃0
(𝛽)

(𝑥, 𝜏) (1 + 𝜁𝑇

𝜕

𝜕𝜏
) 𝜃,𝑛

(𝛼)(𝑥, 𝑡 − 𝜏)] 𝑑𝜏
𝑡

0

 

                   + [∫ 𝑑𝑉(𝑥)
𝜕𝑉

∫ 𝑄(𝛼)(𝑥, 𝜏) (1 + 𝜁𝑞

𝜕

𝜕𝜏
) 𝜃(𝛽)(𝑥, 𝑡 − 𝜏) 𝑑𝜏

𝑡

0

+ 𝜃0 ∫ 𝑑𝐴(𝑥)
𝜕𝑉

∫ 𝑝𝑖
(𝛽)

(𝑥, 𝑡 − 𝜏)
𝜕

𝜕𝜏
(1 + 𝜁𝑞

𝜕

𝜕𝜏
) 𝑢𝑖

(𝛼)(𝑥, 𝜏)
𝑡

0

𝑑𝜏

+ 𝜃0 ∫ 𝑑𝑉(𝑥)
𝑉

∫ 𝐹𝑖
(𝛽)

(𝑥, 𝑡 − 𝜏)
𝜕

𝜕𝜏
(1 + 𝜁𝑞

𝜕

𝜕𝜏
) 𝑢𝑖

(𝛼)(𝑥, 𝜏) 𝑑𝜏
𝑡

0

] 

(14) 

where 𝜃,𝑛 = 𝜃,𝑖  denotes the derivative of the temperature 𝜃 along normal to the surface 𝜕𝑉.  

Then,                                    Ω12 = Ω21                                                                                          (15) 

Proof: - By hypothesis, apply loading in equation (4), we get 
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𝜎𝑖𝑗
(𝛼)

= (𝜆𝑒𝑘𝑘
(𝛼)

− 𝛾𝜃(𝛼)) + 2𝜇𝑒𝑖𝑗
(𝛼)

  , 𝛼 = 1, 2                            (16) 

Taking Laplace to transform over the boundary condition (11) and the equation (17) defined by  

𝑔̃(𝑥, 𝑦, 𝑠) = ℒ[𝑔(𝑥, 𝑦, 𝑡)] = ∫ 𝑔(𝑥, 𝑦, 𝑡)𝑒−𝑠𝑡𝑑𝑡,    𝑠 > 0 

∞

0

 

Therefore, we obtain (for 𝛼 = 1, 2) 

𝑝𝑖(𝑥, 𝑡) = 𝜎̃𝑗𝑖𝑛𝑗;    𝜃̃(𝑥, 𝑡) = 𝜃̃0(𝑥, 𝑡);  𝑥 ∈ 𝜕𝑉, 𝑡 > 0          (17) 

𝜎̃𝑖𝑗
(𝛼)

= 2𝜇𝑒̃𝑖𝑗
(𝛼)

+ [𝜆𝑒̃𝑘𝑘
(𝛼)

− 𝛾𝜃̃(𝛼)]𝛿𝑖𝑗                                              (18) 

Multiplying (18) for 𝛼 = 1 by 𝑒̃𝑖𝑗
(2)

 and for 𝛼 = 2 by 𝑒̃𝑖𝑗
(1)

. Take volume integral after subtracting the results 

and using the relation 

(2𝜇𝑒̃𝑖𝑗
(1)

+ 𝜆𝑒̃𝑘𝑘
(1)

𝛿𝑖𝑗)𝑒̃𝑖𝑗
(2)

= (2𝜇𝑒̃𝑖𝑗
(2)

+ 𝜆𝑒̃𝑘𝑘
(2)

𝛿𝑖𝑗)𝑒̃𝑖𝑗
(1)

 

We obtain the relation 

∫ (𝜎̃𝑖𝑗
(1)

𝑒̃𝑖𝑗
(2)

− 𝜎̃𝑖𝑗
(2)

𝑒̃𝑖𝑗
(1)

)𝑑𝑉
𝑉

= 𝛾 ∫ (𝜃̃(2)𝑒̃𝑘𝑘
(1)

− 𝜃̃(1)𝑒̃𝑘𝑘
(2)

)
𝑉

𝑑𝑉                   (19) 

Now applying the Laplace transform of equation (7), we have from equation (19) 

∫ (𝜎̃𝑖𝑗
(1)

𝑢̃𝑖,𝑗
(2)

− 𝜎̃𝑖𝑗
(2)

𝑢̃𝑖,𝑗
(1)

)𝑑𝑉
𝑉

= 𝛾 ∫ (𝜃̃(2)𝑒̃𝑘𝑘
(1)

− 𝜃̃(1)𝑒̃𝑘𝑘
(2)

)
𝑉

𝑑𝑉                      (20) 

Taking Laplace transform on equation (1) and employing the initial homogeneous conditions (10), we get 

 𝜎̃𝑖𝑗,𝑗 + 𝐹̃𝑖 = 𝜌𝑠2𝑢̃𝑖   ;    𝑥 ∈ 𝑉                                                                                (21) 

Applying Gauss’s divergence theorem over the LHS of equation (20) and use the equation (21) to obtain 

the result as 

∫ (𝑝𝑖
(1)

𝑢̃𝑖
(2)

− 𝑝𝑖
(2)

𝑢̃𝑖
(1)

)
𝜕𝑉

𝑑𝐴 + ∫ (𝐹̃𝑖
(1)

𝑢̃𝑖
(2)

− 𝐹̃𝑖
(2)

𝑢̃𝑖
(1)

)
𝑉

𝑑𝑉 + 𝛾 ∫ (𝜃̃(1)𝑒̃𝑘𝑘
(2)

− 𝜃̃(2)𝑒̃𝑘𝑘
(1)

)
𝑉

𝑑𝑉 = 0  

(22) 

The cause of a mechanical nature is only contained in equation (22): the force exerted by the body and the 

surface's traction. 

Next, we examine thermoelastic configurations adjoining the heat conduction equation  

𝐼(𝛼) = (𝑢(𝛼), 𝜃(𝛼));     𝛼 = 1, 2 

Now, applying Laplace transform over the equation (9), we find the following on simplifying 
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∇2𝜃̃(𝛼) =
(1 + 𝜁𝑞𝑠)𝜌𝑐𝑣𝑠

K(1 + 𝜁𝑇𝑠)
𝑇̃(𝛼) +   

(1 + 𝜁𝑞𝑠)𝛾𝜃0𝑠

K(1 + 𝜁𝑇𝑠)
𝑒̃𝑘𝑘

(𝛼)
 

−
(1+𝜁𝑞𝑠)

Ҝ(1+𝜁𝑇𝑠)
𝑄̃(𝛼)                ; 𝛼 = 1,2                                             (23) 

Multiplying (23) for 𝛼 = 1 by 𝜃(2) and for 𝛼 = 2 by 𝜃̃(1), taking volume integral after subtracting the results 

we find the identity as 

∫ (∇2𝜃̃(2)𝜃̃(1) − ∇2𝜃(1)𝜃̃(2))𝑑𝑉
𝑉

 

=
(1 + 𝜁𝑞𝑠)𝛾𝜃0𝑠

K(1 + 𝜁𝑇𝑠)
∫ (𝜃̃(1)𝑒̃𝑘𝑘

(2)
− 𝜃̃(2)𝑒̃𝑘𝑘

(1)
)𝑑𝑉

𝑉

+
(1 + 𝜁𝑞𝑠)

K(1 + 𝜁𝑇𝑠)
∫ (𝑄̃(1)𝜃̃(2) − 𝑄̃(2)𝜃̃(1))𝑑𝑉

𝑉

                                          (24) 

Again, applying Gauss’s divergence theorem over LHS of equation (24) and we get 

∫ (𝜃̃,𝑛
(2)

𝜃̃0
(1)

− 𝜃̃,𝑛
(1)

𝜃0
(2)

)𝑑𝐴
𝜕𝑉

=
(1 + 𝜁𝑞𝑠)𝛾𝜃0𝑠

K(1 + 𝜁𝑇𝑠)
∫ (𝜃̃(1)𝑒̃𝑘𝑘

(2)
− 𝜃̃(2)𝑒̃𝑘𝑘

(1)
)𝑑𝑉

𝑉

+
(1 + 𝜁𝑞𝑠)

K(1 + 𝜁𝑇𝑠)
∫ (𝑄̃(1)𝜃̃(2) − 𝑄̃(2)𝜃̃(1))𝑑𝑉

𝑉

                                          (25) 

 Equation (25) can be rewritten in the form 

∫ (𝜃̃(1)𝑒̃𝑘𝑘
(2)

− 𝜃̃(2)𝑒̃𝑘𝑘
(1)

)𝑑𝑉
𝑉

=
K(1 + 𝜁𝑇𝑠)

𝛾𝜃0𝑠(1 + 𝜁𝑞𝑠)
∫ (𝜃̃,𝑛

(2)
𝜃̃0

(1)
− 𝜃̃,𝑛

(1)
𝜃̃0

(2)
)𝑑𝐴

𝜕𝑉

+
1

𝛾𝜃0𝑠
∫ (𝑄̃(1)𝜃̃(2) − 𝑄̃(2)𝜃̃(1))𝑑𝑉

𝑉

                                                                     (26) 

Using equation (26) in equation (22) we finally obtain; 

K(1 + 𝜁𝑇𝑠) ∫ (𝜃̃,𝑛
(1)

𝜃̃0
(2)

− 𝜃̃,𝑛
(2)

𝜃̃0
(1)

)𝑑𝐴
𝜕𝑉

+ (1 + 𝜁𝑞𝑠) ∫ (𝑄̃(1)𝜃̃(2) − 𝑄̃(2)𝜃̃(1))𝑑𝑉
𝑉

= 𝜃0𝑠(1 + 𝜁𝑞𝑠) [∫ (𝑝𝑖
(1)

𝑢̃𝑖
(2)

− 𝑝𝑖
(2)

𝑢̃𝑖
(1)

)
𝜕𝑉

𝑑𝐴

+ ∫ (𝐹̃𝑖
(1)

𝑢̃𝑖
(2)

− 𝐹̃𝑖
(2)

𝑢̃𝑖
(1)

)
𝑉

𝑑𝑉]                                                                             (27) 

Applying the convolution theorem given below for taking inverse Laplace transforms in equation (27)   
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ℒ−1(𝑔̃1(𝑠)𝑔̃2(𝑠)) = ∫ 𝑔1(𝜏)

𝑡

0

𝑔2(𝑡 − 𝜏)𝑑𝜏 = ∫ 𝑔2

𝑡

0

(𝜏)𝑔1(𝑡 − 𝜏)𝑑𝜏 

Thus we get equation (14) with the use of the convolution theorem on equation (27). 

It concludes that the reciprocity theorem has been proven for the dual-phase-lags hyperbolic model of 

generalized thermoelasticity.  

 

4. Conclusion 

In this study, we establish a reciprocal principle analogous to Betti's theorem within the context of 

thermoelasticity. Our analysis focuses on fundamental equations subject to mixed boundary-initial value 

problems in thermoelastic media. Notably, we consider non-homogeneous initial conditions in our 

formulation, extending the applicability of the reciprocal theorem to a broader range of practical scenarios. 

Detailed applications of thermoelasticity are mentioned as below: 

1. Structural Engineering 

i. Calculate displacements and stresses in complex structures under non-uniform temperature 

distributions 

ii. Analyze thermal bridges in building envelopes for improved energy efficiency 

2. Heat Transfer Engineering 

i. Determine temperature fields in deforming materials 

ii. Optimize heat sink designs for electronic components, considering both thermal and mechanical 

effects 

3. Stress Analysis 

i. Calculate thermal stresses in composite materials with varying thermal expansion coefficients 

ii. Predict and mitigate thermal fatigue in aerospace structures 

4. Thermal Protection Systems 

i. Optimize heat shield designs for spacecraft re-entry 

ii. Analyze performance of thermal barrier coatings in gas turbines 

5. Smart Materials and Structures 

i. Analyze shape memory alloys' response to thermal-mechanical loads 

ii. Design piezoelectric sensors and actuators for variable temperature environments 

6. Geomechanics 

i. Study thermally induced rock deformations in geothermal energy extraction 

http://www.ijarets.org/
mailto:editor@ijarets.org
mailto:editor@ijarets.org


International Journal of Advanced Research in Engineering Technology and Science  
                                                                                                                                                                        ISSN 2349-2819 

www.ijarets.org                                   Volume-7, Issue-6 June- 2020                                    Email- editor@ijarets.org
  

Copyright@ijarets.org                                                                                                                  Page  41 

ii. Assess stability of underground structures subject to thermal loads 

7. Biomechanics 

i. Model heat transfer and mechanical stress in artificial joints 

ii. Investigate temperature effects on biological tissues 

8. Manufacturing Processes 

i. Analyze residual stresses in welding and heat treatment processes 

ii. Optimize 3D printing parameters to minimize thermal distortion 

9. Energy Storage Systems 

i. Design more efficient and durable batteries by accounting for thermal expansion and contraction 

during charge-discharge cycles 

10. Nanomechanics 

i. Study thermal transport and mechanical behavior in nanostructures 

ii. Develop accurate models for nanoelectromechanical systems (NEMS) operating under varying 

thermal conditions 

 

This reciprocal theorem provides a powerful analytical tool for solving complex thermoelastic problems, 

offering insights into the coupled nature of thermal and mechanical effects in materials across various scales 

and applications. 
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